Shortening Hamming Codes to Better Correct 2-Bit Errors

Cannon McIntosh (Coastal Carolina University) & Willy Kim (Florida State University)

Mentor: Laura Monroe

Motivation

- 2-bit errors are becoming more frequent
- DECTED codes cost more memory and time
- want SECDED 2-bit error correction
 - need weight-2 vector distribution
 - need contextual information from application
- wish to construct codes that do this more effectively
- Use coding theory, combinatorics, and geometry

Method

- find all possible weight-2 correction vectors
 - weight-2 vectors in same coset as received vector
- XOR received vector with each correction vector
- this generates short list of all possible solutions
- use contextual information to choose best candidate

Codes in Common Use

- Hamming and Hsiao are common SECDED codes
 - poor for 2-bit error correction
 - high variance in number of correction vectors
 - high average number of correction vectors
- Can we do better?

Shortening

- omit codewords with 1's in selected bit-position
 - reduces dimension by 1
 - continue until dimension is a power of 2
- Want a code with lower variance and expected value

Greedy Shortening

- among cosets with the least weight-2 vectors

 aborton resition if it removes the residuely 2 vectors.
- o shorten position if it removes no weight-2 vectors
- else, among cosets with the most weight-2 vectors
 shorten to maximize weight-2 vectors removed

LA-UR-19-27162

Block Designs

- Extended Hamming codes are rich in block designs
- 1- $(2^r, 4, 2^{r-1})$
- \bullet 2-(2^r, 4, 2^{r-1}-1)
- \bullet 3-(2^r, 4, 1)
- useful tool to construct tighter bounds

Constructive Bounds

- code of length 2^r
 - o number of weight-2 vectors in a coset
 - lower bound r+1
 - upper bound $2^{r-2} + \lfloor \frac{r+1}{2} \rfloor$

32-bit Code After 8 Shortenings

- any 8 columns contain a weight-4 codeword
- some coset has 2 double hit weight-2 vectors
- that coset has 10 weight-2 vectors left
- $\binom{8}{2}$ = 28 weight-2 vectors double hit
- 31 cosets in total
- at least 3 cosets with only single hit vectors
- those 3 cosets have 8 vectors left

Future Work

- upper bound of shortenings before divergence
- optimal shortening method
- extend to non-SECDED codes

Collaborators and References

- Thomas Hoffman, Ogul Duncan, William Jones, Nathan DeBardeleben, Vanessa Job
- M. Gottscho, C. Schoeny, L. Dolecek, and P. Gupta, "Software-defined error-correcting codes," in 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W), June 2016, pp. 276–282.
- A. Poulos, D. Wallace, R. Robey, L. Monroe, V. Job, S.Blanchard, W. Jones and N. DeBardeleben. "Improving Application Resilience by Extending Error Correction with Contextual Information". IEEE Fault Tolerance for HPC at eXtreme Scale (FTXS) Workshop, Supercomputing 2018, November 2018.

EST.1943 ——